578 research outputs found

    Improving the Structure of a Signal Used for Real-Time Calibrating of the Receiving Channels of Digital Transceiver Modules in Digital Phased Antenna Arrays

    Get PDF
    Introduction. Modern digital phased array antenna (DPAA) systems incorporate a large number of identical transceiver modules (TMs). These modules require real-time calibration with a high level of accuracy. In a previous work, we proposed a real-time calibration method for all receiver channels, which is based on the use of a calibration signal (CalSig) of the same frequency spectrum as the reflected signal and modulated in phase and amplitude by BPSK and OOK codes, respectively. This method was found to have a number of advantages over conventional approaches. However, the use of the same CalSig sample for all receiving channels increases the noise power gain at the output of a digital beam-forming unit (DBU). To overcome this limitation, we set out to improve the structure of CalSigs by making them pseudo-orthogonal. As a result, the noise power gain at the DBU output can be significantly reduced compared to that obtained in our previous work.Aim. To propose an improved design of a controlled amplitude modulation code OOK generator, which allows creation of pseudo-orthogonal CalSigs. As a result, the noise power gain at the output will increase insignificantly, thus having no negative effect on the quality of digital beam forming, signal processing and calibration.Materials and methods. Theory of system engineering and technology; theory of digital signal processing; system analysis; mathematical modeling.Results. An improved CalSig for calibrating the receiving channels of TMs was obtained. A structural diagram allowing the formation of pseudo-orthogonal CalSigs was synthesized.Conclusions. We proposed a new approach to improving the structure of signals used for real-time calibrating the DPAA receiving channels. A structural diagram of an amplitude-modulated OOK code generator for pseudo-orthogonal CalSigs was developed.Introduction. Modern digital phased array antenna (DPAA) systems incorporate a large number of identical transceiver modules (TMs). These modules require real-time calibration with a high level of accuracy. In a previous work, we proposed a real-time calibration method for all receiver channels, which is based on the use of a calibration signal (CalSig) of the same frequency spectrum as the reflected signal and modulated in phase and amplitude by BPSK and OOK codes, respectively. This method was found to have a number of advantages over conventional approaches. However, the use of the same CalSig sample for all receiving channels increases the noise power gain at the output of a digital beam-forming unit (DBU). To overcome this limitation, we set out to improve the structure of CalSigs by making them pseudo-orthogonal. As a result, the noise power gain at the DBU output can be significantly reduced compared to that obtained in our previous work.Aim. To propose an improved design of a controlled amplitude modulation code OOK generator, which allows creation of pseudo-orthogonal CalSigs. As a result, the noise power gain at the output will increase insignificantly, thus having no negative effect on the quality of digital beam forming, signal processing and calibration.Materials and methods. Theory of system engineering and technology; theory of digital signal processing; system analysis; mathematical modeling.Results. An improved CalSig for calibrating the receiving channels of TMs was obtained. A structural diagram allowing the formation of pseudo-orthogonal CalSigs was synthesized.Conclusions. We proposed a new approach to improving the structure of signals used for real-time calibrating the DPAA receiving channels. A structural diagram of an amplitude-modulated OOK code generator for pseudo-orthogonal CalSigs was developed

    Beyond socket options: making the Linux TCP stack truly extensible

    Get PDF
    The Transmission Control Protocol (TCP) is one of the most important protocols in today's Internet. Its specification and implementations have been refined for almost forty years. The Linux TCP stack is one of the most widely used TCP stacks given its utilisation on servers and Android smartphones and tablets. However, TCP and its implementations evolve very slowly. In this paper, we demonstrate how to leverage the eBPF virtual machine that is part of the recent versions of the Linux kernel to make the TCP stack easier to extend. We demonstrate a variety of use cases where the eBPF code is injected inside a running kernel to update or tune the TCP implementation. We first implement the TCP User Timeout Option. Then we propose a new option that enables a client to request a server to use a specific congestion control scheme. Our third extension is a TCP option that sets the initial congestion window. We then demonstrate how eBPF code can be used to tune the acknowledgment strategy.Comment: 9 pages, 8 figure

    Scrambling for higher metrics in the Journal Impact Factor bubble period: a real-world problem in science management and its implications

    Get PDF
    Universities and funders in many countries have been using Journal Impact Factor (JIF) as an indicator for research and grant assessment despite its controversial nature as a statistical representation of scientific quality. This study investigates how the changes of JIF over the years can affect its role in research evaluation and science management by using JIF data from annual Journal Citation Reports (JCR) to illustrate the changes. The descriptive statistics find out an increase in the median JIF for the top 50 journals in the JCR, from 29.300 in 2017 to 33.162 in 2019. Moreover, on average, elite journal families have up to 27 journals in the top 50. In the group of journals with a JIF of lower than 1, the proportion has shrunk by 14.53% in the 2015–2019 period. The findings suggest a potential ‘JIF bubble period’ that science policymaker, university, public fund managers, and other stakeholders should pay more attention to JIF as a criterion for quality assessment to ensure more efficient science management

    Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation

    Full text link
    We consider a stochastic individual-based model in continuous time to describe a size-structured population for cell divisions. This model is motivated by the detection of cellular aging in biology. We address here the problem of nonparametric estimation of the kernel ruling the divisions based on the eigenvalue problem related to the asymptotic behavior in large population. This inverse problem involves a multiplicative deconvolution operator. Using Fourier technics we derive a nonparametric estimator whose consistency is studied. The main difficulty comes from the non-standard equations connecting the Fourier transforms of the kernel and the parameters of the model. A numerical study is carried out and we pay special attention to the derivation of bandwidths by using resampling

    Improving Machine Translation Quality with Denoising Autoencoder and Pre-Ordering

    Get PDF
    The problems in machine translation are related to the characteristics of a family of languages, especially syntactic divergences between languages. In the translation task, having both source and target languages in the same language family is a luxury that cannot be relied upon. The trained models for the task must overcome such differences either through manual augmentations or automatically inferred capacity built into the model design. In this work, we investigated the impact of multiple methods of differing word orders during translation and further experimented in assimilating the source languages syntax to the target word order using pre-ordering. We focused on the field of extremely low-resource scenarios. We also conducted experiments on practical data augmentation techniques that support the reordering capacity of the models through varying the target objectives, adding the secondary goal of removing noises or reordering broken input sequences. In particular, we propose methods to improve translat on quality with the denoising autoencoder in Neural Machine Translation (NMT) and pre-ordering method in Phrase-based Statistical Machine Translation (PBSMT). The experiments with a number of English-Vietnamese pairs show the improvement in BLEU scores as compared to both the NMT and SMT systems

    A neurodynamic approach for a class of pseudoconvex semivectorial bilevel optimization problem

    Full text link
    The article proposes an exact approach to find the global solution of a nonconvex semivectorial bilevel optimization problem, where the objective functions at each level are pseudoconvex, and the constraints are quasiconvex. Due to its non-convexity, this problem is challenging, but it attracts more and more interest because of its practical applications. The algorithm is developed based on monotonic optimization combined with a recent neurodynamic approach, where the solution set of the lower-level problem is inner approximated by copolyblocks in outcome space. From that, the upper-level problem is solved using the branch-and-bound method. Finding the bounds is converted to pseudoconvex programming problems, which are solved using the neurodynamic method. The algorithm's convergence is proved, and computational experiments are implemented to demonstrate the accuracy of the proposed approach

    On how religions could accidentally incite lies and violence: folktales as a cultural transmitter

    Get PDF
    Folklore has a critical role as a cultural transmitter, all the while being a socially accepted medium for the expressions of culturally contradicting wishes and conducts. In this study of Vietnamese folktales, through the use of Bayesian multilevel modeling and the Markov chain Monte Carlo technique, we offer empirical evidence for how the interplay between religious teachings (Confucianism, Buddhism, and Taoism) and deviant behaviors (lying and violence) could affect a folktale’s outcome. The findings indicate that characters who lie and/or commit violent acts tend to have bad endings, as intuition would dictate, but when they are associated with any of the above Three Teachings, the final endings may vary. Positive outcomes are seen in cases where characters associated with Confucianism lie and characters associated with Buddhism act violently. The results supplement the worldwide literature on discrepancies between folklore and real-life conduct, as well as on the contradictory human behaviors vis-à-vis religious teachings. Overall, the study highlights the complexity of human decision-making, especially beyond the folklore realm
    corecore